Constellation-X: The IMBH Machine

Jon M. Miller
NSF Fellow, Harvard-Smithsonian CfA

- Evidence for IMBHs in some ULXs is steadily mounting.
 But far better evidence is needed.
- It will be very hard to make radial velocity curves to determine the masses of ULXs:
 - Sources do not seem to turn "off" ◊ disk >> companion.
 - Some sources seem to be embedded in nebulae.
 - Periods may be very long (months?).
 - Fields can be very crowded ◊ spectra contaminated.
- A preponderance of overwhelming X-ray evidence will likely be decisive for IMBHs ... Con-X can do this.

Cool disks \Diamond Evidence for IMBHs

Case Study: NGC 1313 X-1

 $L_X = 1-2 E+40 erg/s$

Edd. Scaling: 100-200 Msun

kT = 0.15 keV (1 keV typical for 10 Msun) M = 4000 Msun

Normalization of the disk: M = 400 Msun

Cool disks \Diamond Evidence for IMBHs

- Not an effect of low A_Z in intervening absorption.
- Soft component is indeed a disk, not a photosphere.
- Radio/X-ray flux ratios rule-out relativistic beaming.
- Funneling unlikely.
- "alternative" spectra fail.

The Fundamental Plane:

How to do better:

(Strohmayer & Muchotzky 2003)

9-Jan-2003 15:41

Doing better with Con-X:

Side by side comparison:

The QPO Equation (see vdK95):

$$N_{-} = 0.5 * [s^{2}/(s+b)] * (rms)^{2} * \sqrt{(T/_{-})}$$

- ♦ For a QPO of a given q, S/N grows linearly with count rate (effective area) for b << s.</p>
- With Con-X, then, QPO significances will be enhanced by R = A_con-x / A_xmm.

R = 7-8 at 1-2 keV, 4-5 at 6 keV.

Relative Impact of Constellation-X:

6-8

AGN in which reverberation

mapping will work:

Galactic black holes in which

GR effects can be probed over

a 10 year mission: 10-15

ULXs with some hint of IMBH

nature, on which Con-X can be

decisive with XMM-like resolution: 20-30

Disks, Fe K lines, QPOs in just 1/3, impact as large as for AGN, 10 Msun BHs.

- 1. NGC 1313 X-1
- 2. NGC 1313 X-2
- 3. NGC 4559 X-7
- 4. NGC 4559 X-10
- 5. NGC 3628 X-1
- 6. M81 X-9
- 7. M81 X-6
- 8. Holmberg II X-1
- 9. NGC 5408 X-1
- 10-13. Antennae sources

- 14. M101 SSS
- 15. NGC 5204 X-1
- IC 342 X-1
- IC 342 X-2
- Dwingeloo X-1
- NGC 6946 X-1
- NGC 2276 X-1
- Cartwheel X-1
- NGC 7714 X-1

... and there are others!

Summary

- Constellation-X can reveal IMBHs.
- Impact as great as for AGN, stellar-mass BHs.
- Tools which XMM can bring to bear:
 - Disk spectroscopy (& ruling-out any thin plasma)
 - Relativistic Line Spectroscopy
 - QPO timing studies